

Security Assessment Report

 Invariant Protocol v0.1.0
May 6th, 2022

SOTERIA

1

 SOTERIA

Summary

The Soteria team was engaged to do a thorough security analysis of the Invariant Protocol

v0.1.0 Solana smart contract program. The artifact of the audit was the source code of the

following on-chain smart contract excluding tests in a private repository:

• Branch audit

• Commit e64141fefef3d3e27e4ed8b9f00585eb47fa744a

The audit revealed 14 issues including 1 critical vulnerability, which were reported to the

Invariant Protocol team.

The Invariant Protocol team responded promptly with a PR for the post-audit review. The

scope of the post-audit review is to validate if the reported issues have been addressed. The

audit was finalized based on the changes in PR #189.

This report describes the findings and resolutions in detail.

2

 SOTERIA

Table of Contents

Methodology and Scope of Work ... 3

Result Overview ... 4

Findings in Detail ... 5

[C-1] Steal funds/rewards using different lower/upper ticks ... 5

1. Steal funds in remove_position... 5

2. Steal funds in claim_fee ... 7

3. Steal reward via update_seconds_per_liquidity .. 8

[M-1] Incorrect pool key after pool ownership transfer ... 9

[M-2] Malicious initial pool tick may prevent users from trading here ... 10

[L-1] Arithmetic overflows ... 12

[L-2] Not resetting the last position after moving ... 14

[L-3] Inconsistent tick checks ... 15

[L-4] Missing checks on tick_spacing ...16

[L-5] Inconsistent access control in change_protocol_fee ... 17

[I-1] Inconsistent amount_out and amount_in in swap ... 18

[I-2] Redundancies in PDA seeds and account checks ...19

[I-3] Swap exceeds computation limit .. 20

[I-4] Oracle can be set but is not used ... 21

[I-5] Redundant account and access control .. 22

[I-6] Design Choice, best practice, and questions ... 23

3

 SOTERIA

Methodology and Scope of Work

Soteria's audit team, which consists of Computer Science professors and industrial

researchers with extensive experience in Solana smart contract security, program analysis,

testing and formal verification, performed a comprehensive manual code review, software

static analysis and penetration testing.

Assisted by the Soteria Scanner developed in-house, the audit team particularly focused on

the following work items:

• Check common security issues.
o Missing ownership checks
o Missing signer checks
o Signed invocation of unverified programs
o Solana account confusions
o Arithmetic over- or underflows
o Numerical precision errors
o Loss of precision in calculation
o Insufficient SPL-Token account verification
o Missing rent exemption assertion
o Casting truncation
o Did not follow security best practices
o Outdated dependencies
o Redundant code
o Unsafe Rust code

• Check program logic implementation against available design specifications.

• Check poor coding practices and unsafe behavior.

• The soundness of the economics design and algorithm is out of scope of this work

4

 SOTERIA

Result Overview

In total, the audit team found the following issues.

CONTRACT INVARIANT PROTOCOL V0.1.0

Issue Impact Status
[C-1] Steal funds/rewards using different lower/upper ticks Critical Resolved

[M-1] Incorrect pool key after pool ownership transfer Medium Resolved

[M-2] Malicious initial pool tick may prevent users from trading here Medium Resolved

[L-1] Arithmetic overflows Low Resolved

[L-2] Not resetting the last position after moving Low Resolved

[L-3] Inconsistent tick checks Low Resolved

[L-4] Missing checks on tick_spacing Low Resolved

[L-5] Inconsistent access control in change_protocol_fee Low Resolved

[I-1] Inconsistent amount_out and amount_in in swap Informational Resolved

[I-2] Redundancies in PDA seeds and account checks Informational Resolved

[I-3] Swap exceeds computation limit Informational Resolved

[I-4] Oracle can be set but is not used Informational Resolved

[I-5] Redundant account and access control Informational Resolved

[I-6] Design Choice, best practice and questions Informational Resolved

5

 SOTERIA

Findings in Detail

IMPACT - CRITICAL
[C-1] Steal funds/rewards using different lower/upper ticks

1. Steal funds in remove_position

Instruction remove_position only requires the signature of the position owner and accepts

the lower and upper ticks from the caller.

However, there is no check to make sure that the lower and upper ticks are the same ones

that were used to create the position. As a result, malicious users provide a wider tick range

and steal funds.

/* programs/invariant/src/instructions/remove_position.rs */
015: #[derive(Accounts)]
016: #[instruction(index: i32, lower_tick_index: i32, upper_tick_index: i32)]
017: pub struct RemovePosition<'info> {
050: #[account(mut,
051: seeds = [b"tickv1", pool.key().as_ref(), &lower_tick_index.to_le_bytes()],
052: bump = lower_tick.load()?.bump
053:)]
054: pub lower_tick: AccountLoader<'info, Tick>,
055: #[account(mut,
056: seeds = [b"tickv1", pool.key().as_ref(), &upper_tick_index.to_le_bytes()],
057: bump = upper_tick.load()?.bump
058:)]
059: pub upper_tick: AccountLoader<'info, Tick>,

118: impl<'info> RemovePosition<'info> {
119: pub fn handler(
124:) -> ProgramResult {
138: let (amount_x, amount_y) = {
145: let (amount_x, amount_y) = removed_position.modify(
147: upper_tick,
148: lower_tick,
152:)?;
160: (amount_x, amount_y)
161: };
218: token::transfer(self.send_x().with_signer(signer), amount_x.0)?;
219: token::transfer(self.send_y().with_signer(signer), amount_y.0)?;

6

 SOTERIA

PoC. As shown in the log below, an attacker created a position using ticks -2/2. And,

amount_x and amount_y are both 4000. When removing this position, the attacker uses a

wider tick range (-20/20 as the lower/higher ticks) and gets back 39978 amount_x and

39978 amount_y.

7

 SOTERIA

2. Steal funds in claim_fee

Similar to the previous issue in remove_position, the position owner can provide arbitrary

lower/upper ticks and sign the instruction claim_fee.

Since there are no checks on the provided ticks, malicious users may be able to

manipulate position.tokens_owed_x and position.tokens_owed_y to steal money.

/* programs/invariant/src/instructions/claim_fee.rs */
013: #[derive(Accounts)]
014: #[instruction(index: u32, lower_tick_index: i32, upper_tick_index: i32)]
015: pub struct ClaimFee<'info> {
030: #[account(mut,
031: seeds = [b"tickv1", pool.key().as_ref(), &lower_tick_index.to_le_bytes()],
032: bump = lower_tick.load()?.bump
033:)]
034: pub lower_tick: AccountLoader<'info, Tick>,
035: #[account(mut,
036: seeds = [b"tickv1", pool.key().as_ref(), &upper_tick_index.to_le_bytes()],
037: bump = upper_tick.load()?.bump
038:)]
039: pub upper_tick: AccountLoader<'info, Tick>,

097: impl<'info> ClaimFee<'info> {
098: pub fn handler(&self) -> ProgramResult {
110: position
111: .modify(
113: upper_tick,
114: lower_tick,
118:)
121: let fee_to_collect_x = TokenAmount::from_decimal(position.tokens_owed_x);
122: let fee_to_collect_y = TokenAmount::from_decimal(position.tokens_owed_y);
133: token::transfer(cpi_ctx_x, fee_to_collect_x.0)?;
134: token::transfer(cpi_ctx_y, fee_to_collect_y.0)?;

8

 SOTERIA

3. Steal reward via update_seconds_per_liquidity

Similarly, in instruction update_seconds_per_liquidity, malicious users can provide lower and

upper ticks that are different from the ones when the position was created. They can

manipulate position.seconds_per_liquidity_inside with a wider tick range as well as the

reward that is calculated based on the position.seconds_per_liquidity_inside.

/* programs/invariant/src/instructions/update_seconds_per_liquidity.rs */
12: #[derive(Accounts)]
13: #[instruction(lower_tick_index: i32, upper_tick_index: i32, index: i32)]
14: pub struct UpdateSecondsPerLiquidity<'info> {
20: #[account(
21: seeds = [b"tickv1", pool.key().as_ref(), &lower_tick_index.to_le_bytes()],
22: bump = lower_tick.load()?.bump
23:)]
24: pub lower_tick: AccountLoader<'info, Tick>,
25: #[account(
26: seeds = [b"tickv1", pool.key().as_ref(), &upper_tick_index.to_le_bytes()],
27: bump = upper_tick.load()?.bump
28:)]
29: pub upper_tick: AccountLoader<'info, Tick>,
45: }

48: pub fn handler(&self) -> ProgramResult {
56: position.seconds_per_liquidity_inside =
57: calculate_seconds_per_liquidity_inside(lower_tick, upper_tick, ...);

Resolution

Because the contract has been deployed, we immediately reported our findings with PoCs to

the Invariant Protocol team. The team promptly confirmed and fixed the issues.

We did not review the historical transactions, as it’s not in the scope of this audit. However,

the Invariant Protocol team confirmed that no one had exploited this vulnerability.

9

 SOTERIA

IMPACT – MEDIUM
[M-1] Incorrect pool key after pool ownership transfer

There is a copy & paste error at line 67 in transfer_position_ownership.rs. After transfer, the

pool key will be lost. It should be pool: removed_position.pool.

/* programs/invariant/src/instructions/transfer_position_ownership.rs */
65: **new_position = Position {
66: owner: *self.recipient.key,
67: pool: *self.recipient.key,
68: id: removed_position.id,
79: };

Resolution

The Invariant team confirmed and fixed this issue.

10

 SOTERIA

IMPACT - MEDIUM
[M-2] Malicious initial pool tick may prevent users from trading here

Anyone can call the instruction create_pool to create a pool. However, since the seeds for

the pool PDA contains the token pair token_x and token_y, once a pool for a particular token

pair and fee_tier is created, it's not possible to create another pool for the same token pair

and fee_tier. In addition, when creating the pool, the caller needs to provide the initial tick

index, which will determine the initial price.

Malicious users may create pools for many token pairs and provide large init_tick. As a

result, the initial price will be extremely unfair. Since others cannot create new pools for the

same token pairs, users may not want to trade due to the unfair price.

/* programs/invariant/src/instructions/create_pool.rs */
016: #[derive(Accounts)]
017: pub struct CreatePool<'info> {
018: #[account(seeds = [b"statev1".as_ref()], bump = state.load()?.bump)]
019: pub state: AccountLoader<'info, State>,
020: #[account(init,
021: seeds = [b"poolv1", token_x.to_account_info().key.as_ref(),
 token_y.to_account_info().key.as_ref(),
 &fee_tier.load()?.fee.v.to_le_bytes(),
 &fee_tier.load()?.tick_spacing.to_le_bytes()],
022: bump, payer = payer
023:)]
024: pub pool: AccountLoader<'info, Pool>,
046: #[account(mut)]
047: pub payer: Signer<'info>,
054: }

056: impl<'info> CreatePool<'info> {
057: pub fn handler(&self, init_tick: i32, bump: u8) -> ProgramResult {
076: **pool = Pool {
085: sqrt_price: calculate_price_sqrt(init_tick),
086: current_tick_index: init_tick,
100: };

11

 SOTERIA

Resolution

The Invariant team is aware of such behaviors and does not consider this scenario as an

issue. This is an intended behavior.

Non-market prices always make it possible to swap with profit and those swaps change the

price towards the market one. The case where there is no liquidity can be easily solved by

providing a minimum amount of liquidity in full rage. Then, the price will move to the market

one in a few transactions, which is considered to be the correct permission-less trade-off.

12

 SOTERIA

IMPACT – LOW
[L-1] Arithmetic overflows

1. The type of owner_list.head and recipient_list.head is u32.

/* programs/invariant/src/instructions/transfer_position_ownership.rs */
60: owner_list.head -= 1;
61: recipient_list.head += 1;

2. The type of position_iterator is u128.

/* programs/invariant/src/structs/position.rs */
112: pub fn initialized_id(&mut self, pool: &mut Pool) {
113: self.id = pool.position_iterator;
114: pool.position_iterator += 1;
115: }

3. tick and tick_spacing are integers.

/* programs/invariant/src/structs/tickmap.rs */
39: pub fn get_search_limit(tick: i32, tick_spacing: u16, up: bool) -> i32 {
40: let index = tick / tick_spacing as i32;
/* programs/invariant/src/structs/tickmap.rs */
85: let (mut byte, mut bit) = tick_to_position(tick + tick_spacing as i32, tick_spacing);

4. fee_protocol_token_y and fee_protocol_token_x are u64.

/* programs/invariant/src/structs/pool.rs */
36: pub fn add_fee(&mut self, amount: TokenAmount, in_x: bool) {
45: if in_x {
48: self.fee_protocol_token_x += protocol_fee.0;
49: } else {
52: self.fee_protocol_token_y += protocol_fee.0;
53: }
54: }

5. current_timestamp and self.last_timestamp are u64.

70: pub fn update_seconds_per_liquidity_global(&mut self, current_timestamp: u64) {
71: self.seconds_per_liquidity_global = self.seconds_per_liquidity_global
72: + (FixedPoint::from_integer((current_timestamp - self.last_timestamp) as u128)
73: / self.liquidity);

13

 SOTERIA

6. tick_index is i32.

/* programs/invariant/src/instructions/swap.rs */
221: pool.current_tick_index = if x_to_y && is_enough_amount_to_cross {
222: tick_index - pool.tick_spacing as i32

As a fix, it may be a good idea to enable the overflow runtime check in Cargo.toml

[profile.release]
overflow-checks = true

Resolution

The Invariant team confirmed and fixed the issues.

14

 SOTERIA

IMPACT – LOW
[L-2] Not resetting the last position after moving

In instruction transfer_position_ownership, after moving the last position to the one to be

deleted, the last position is not reset properly.

/* programs/invariant/src/instructions/transfer_position_ownership.rs */
082: // when removed position is not the last one
083: if owner_list.head != index {
084: let last_position = self.last_position.load_mut()?;
085:
086: **removed_position = Position {
087: owner: last_position.owner,
100: };
101: }

In particular, after line 100, last_position should be reset like what remove_position does

/* programs/invariant/src/instructions/remove_position.rs */
192:
193: // when removed position is not the last one
194: if position_list.head != index {
195: let mut last_position = self.last_position.load_mut()?;
198: **removed_position = Position {
199: bump: removed_position.bump,
200: owner: last_position.owner,
212: };
214: *last_position = Default::default();
215: }

Resolution

The Invariant team confirmed and fixed the issue.

15

 SOTERIA

IMPACT – LOW
[L-3] Inconsistent tick checks

It’s unclear if tick can be MAX_TICK.

/* programs/invariant/src/math.rs */
22: assert!(tick <= MAX_TICK, "tick over bounds");

/* programs/invariant/src/util.rs */
35: require!(tick_index > (-MAX_TICK), InvalidTickIndex);
36: require!(tick_index < MAX_TICK, InvalidTickIndex);

Resolution

The Invariant team confirmed and fixed the issue.

16

 SOTERIA

IMPACT – LOW
[L-4] Missing checks on tick_spacing

Although instruction create_fee_tier is privileged, tick_spacing should still be checked

because it cannot be 0. However, the non-zero check is currently missing.

/* programs/invariant/src/instructions/create_fee_tier.rs */
25: impl<'info> CreateFeeTier<'info> {
26: pub fn handler(&self, fee: u128, tick_spacing: u16, bump: u8) -> ProgramResult {
32: **fee_tier = FeeTier {
33: fee,
34: tick_spacing,
35: bump,
36: };
39: }
40: }

Resolution

The Invariant team confirmed and fixed the issue.

17

 SOTERIA

IMPACT – LOW
[L-5] Inconsistent access control in change_protocol_fee

/* programs/invariant/src/lib.rs */
124: #[access_control(receiver(&ctx.accounts.pool, &ctx.accounts.admin))]
125: pub fn change_protocol_fee(
128:) -> ProgramResult {
129: ctx.accounts.handler(protocol_fee)
130: }

The #[access_control makes sure that pool.fee_receiver is the admin. This works before

changing the pool.fee_receiver via instruction change_fee_receiver.

If the fee_receiver is set to a non-admin account, the access control cannot be satisfied so

this instruction will always fail.

Resolution

The Invariant team confirmed that this is an intended behavior.

18

 SOTERIA

IMPACT – INFO
[I-1] Inconsistent amount_out and amount_in in swap

In src/math.rs, amount_out is set to amount (smaller) but amount_in is not changed, which

seems to lead to inconsistency.

/* programs/invariant/src/math.rs */
158: // Amount out can not exceed amount
159: if !by_amount_in && amount_out > amount {
160: amount_out = amount;
161: }

Resolution

The Invariant team was aware of this issue and it's the intended behavior right now.

19

 SOTERIA

IMPACT – INFO
[I-2] Redundancies in PDA seeds and account checks

1. The constraint in line 46 implies the ones in lines 44-45 will be true because they were

checked when creating the pool. It's not a big issue and still safe.

Instruction withdraw_protocol_fee has similar issues.

/* programs/invariant/src/instructions/swap.rs */
15: #[derive(Accounts)]
16: pub struct Swap<'info> {
43: #[account(mut,
44: constraint = &reserve_x.mint == token_x.to_account_info().key @ InvalidMint,
45: constraint = &reserve_x.owner == program_authority.key @ InvalidAuthority,
46: constraint = reserve_x.to_account_info().key == &pool.load()?.token_x_reserve
 @ InvalidTokenAccount
47:)]
48: pub reserve_x: Box<Account<'info, TokenAccount>>,

2. create_program_address will hash both the seeds and program_id. It's not necessary to

put another program_id in the seeds. It's not incorrect as it's still safe.

/* programs/invariant/src/instructions/create_fee_tier.rs */
8: #[derive(Accounts)]
9: #[instruction(fee: u128, tick_spacing: u16)]
10: pub struct CreateFeeTier<'info> {
11: #[account(init,
12: seeds = [b"feetierv1", program_id.as_ref(), &fee.to_le_bytes(),
 &tick_spacing.to_le_bytes()],
14:)]

Resolution

Since it’s still correct and safe, no actions will be taken.

20

 SOTERIA

IMPACT – INFO
[I-3] Swap exceeds computation limit

At line 137 of swap.rs, the loop iterates on the ticks until remaining_amount is zero.

Depending on how the ticks are distributed, it can easily exceed the computing limit.

/* programs/invariant/src/instructions/swap.rs */
137: while !remaining_amount.is_zero() {
237: }

For example, we got both exceeded maximum number of instructions allowed

(1400000) and out of memory errors in our tests. In addition, we found the loop keeps going

even the liquidity becomes 0, which may be used to further optimize the process.

Program log: INVARIANT: SWAP
...
Program log: tick_index: -2
Program log: tick_address: DhutfvqscYjfN7KGcG9vs8GVrhBzmVuaBihm96JPwujj
Program log: cross_tick pool.liquidity: Liquidity { v: 19960000000000000 }

Program log: pool.current_tick_index: -3
Program log: remaining_amount: TokenAmount(19945005500)
Program log: pool.liquidity: Liquidity { v: 19960000000000000 }
...
Program log: pool.current_tick_index: -21
Program log: remaining_amount: TokenAmount(19927052275)
Program log: pool.liquidity: Liquidity { v: 0 }
...
Program log: pool.current_tick_index: -278
Program log: remaining_amount: TokenAmount(19927052275)
Program log: pool.liquidity: Liquidity { v: 0 }
...
Program log: pool.current_tick_index: -535
Program log: remaining_amount: TokenAmount(19927052275)
Program log: pool.liquidity: Liquidity { v: 0 }
...
Program log: pool.current_tick_index: -6446
Program log: remaining_amount: TokenAmount(19927052275)
Program log: pool.liquidity: Liquidity { v: 0 }
Program log: Error: memory allocation failed, out of memory
Program FFtYJgUdvZwJkjx4YCTV61ik8rUY3HAp4dMzNkvV76Nx consumed 935856 of 1400000 compute units
Program failed to complete: BPF program panicked
Program FFtYJgUdvZwJkjx4YCTV61ik8rUY3HAp4dMzNkvV76Nx failed: Program failed to complete

Resolution

Improvements to the logarithm computation and the zero-liquidity scenario have been

implemented.

21

 SOTERIA

IMPACT – INFO
[I-4] Oracle can be set but is not used

Oracle can be set using the instruction initialize_oracle. However, it's not used anywhere. Is

this an incomplete feature?

/* programs/invariant/src/instructions/initialize_oracle.rs */
28: impl<'info> InitializeOracle<'info> {
29: pub fn handler(&self) -> ProgramResult {
30: msg!("INVARIANT: INITIALIZE ORACLE");
40: pool.set_oracle(self.oracle.key());
41: oracle.init();
44: }
45: }

/* programs/invariant/src/structs/pool.rs */
34: impl Pool {
78: pub fn set_oracle(&mut self, address: Pubkey) {
79: self.oracle_address = address;
81: }
82: }

Resolution

The Invariant Protocol team confirmed that this is for future integration.

22

 SOTERIA

IMPACT – INFO
[I-5] Redundant account and access control

1. program_authority is not used in this instruction and seems redundant

/* programs/invariant/src/instructions/change_fee_receiver.rs */
06: #[derive(Accounts)]
07: pub struct ChangeFeeReceiver<'info> {
19: #[account(constraint = &state.load()?.admin == admin.key @ InvalidAdmin)]
20: pub admin: Signer<'info>,
22: #[account(constraint = &state.load()?.authority == program_authority.key @ InvalidAuthority)]
23: pub program_authority: AccountInfo<'info>,
24: }
25:

/* programs/invariant/src/lib.rs */
132: #[access_control(admin(&ctx.accounts.state, &ctx.accounts.admin))]
133: pub fn change_fee_receiver(ctx: Context<ChangeFeeReceiver>) -> ProgramResult {
134: ctx.accounts.handler()
135: }

2. The following is what the #[access_control does at line 132. It checks the same condition

as the constraints in line 19.

// #[access_control(admin(&ctx.accounts.state, &ctx.accounts.admin))]
fn admin(state_loader: &AccountLoader<State>, signer: &AccountInfo) -> Result<()> {
 let state = state_loader.load()?;
 if !(signer.key.eq(&state.admin)) {
 return Err(crate::ErrorCode::Unauthorized.into());
 };
 Ok(())
}

Resolution

The Invariant Protocol team confirmed and removed program_authority.

The extra access control check is acceptable.

23

 SOTERIA

IMPACT – INFO
[I-6] Design Choice, best practice, and questions

1. In instruction remove_position, a tick is closed when liquidity is zero. Why does the

program need to close ticks, given they can be created by anyone without providing

liquidity?

2. In instruction remove_position, the owner who receives the remaining SOL in tick

accounts may not be the one who paid to create them. Is this an intended behavior?

3. In create_pool, the protocol_fee is set to 0.2, which seems too high.

/* programs/invariant/src/instructions/create_pool.rs */
83: protocol_fee: FixedPoint::from_scale(2, 1),

Resolution

The Invariant Protocol team confirmed these are intended or allowed behaviors.

DISCLAIMER

The instance report ("Report") was prepared pursuant to an agreement between

Coderrect Inc. d/b/a Soteria ("Company") and Akudama GmbH ("Client"). This Report

solely includes the results of a technical assessment of a specific build and/or version

of the Client's code specified in the Report ("Assessed Code") by the Company. The sole

purpose of the Report is to provide the Client with the results of the technical

assessment of the Assessed Code. The Report does not apply to any other version

and/or build of the Assessed Code. Regardless of the contents of the Report, the Report

does not (and should not be interpreted to) provide any warranty, representation or

covenant that the Assessed Code: (i) is error and/or bug free, (ii) has no security

vulnerabilities, and/or (iii) does not infringe any third-party rights. Moreover, the

Report is not, and should not be considered, an endorsement by the Company of the

Assessed Code and/or of the Client. Finally, the Report should not be considered

investment advice or a recommendation to invest in the Assessed Code and/or the

Client.

This Report is considered null and void if the Report (or any portion thereof) is altered

in any manner.

ABOUT

Founded by leading academics in the field of software security and senior industrial

veterans, Soteria is a leading blockchain security company that currently focuses on

Solana programs. We are also building sophisticated security tools that incorporate

static analysis, penetration testing, and formal verification.

At Soteria, we identify and eliminate security vulnerabilities through the most rigorous

process and aided by the most advanced analysis tools.

For more information, check out our website and follow us on twitter.

https://soteria.dev/
https://twitter.com/soteria_bc

	Methodology and Scope of Work
	Result Overview
	Findings in Detail
	1. Steal funds in remove_position
	2. Steal funds in claim_fee
	3. Steal reward via update_seconds_per_liquidity

	[C-1] Steal funds/rewards using different lower/upper ticks
	[M-1] Incorrect pool key after pool ownership transfer
	[M-2] Malicious initial pool tick may prevent users from trading here
	[L-1] Arithmetic overflows
	[L-2] Not resetting the last position after moving
	[L-3] Inconsistent tick checks
	[L-4] Missing checks on tick_spacing
	[L-5] Inconsistent access control in change_protocol_fee
	[I-1] Inconsistent amount_out and amount_in in swap
	[I-2] Redundancies in PDA seeds and account checks
	[I-3] Swap exceeds computation limit
	[I-4] Oracle can be set but is not used
	[I-5] Redundant account and access control
	[I-6] Design Choice, best practice, and questions

