Invariant Bonds

March 15, 2022

1 Introduction

This paper is a short description focused to show how Invariant Bonds works. Bonds are a pricing mechanism that allows users to purchase tokens at a lower price. Bond is made up of various variables. The first, floor_price, defines the lowest price at which we may buy tokens. Each token purchase increases the price, which further falls linearly over time. The up_bound parameter controls how much the price can rise, while the velocity parameter determines how fast the price hits the floor_price.

When a user buys a part of a bond, he or she sets a new price and pays the arithmetic mean of the previous and new prices. Each time, bond specifications are given, and the user may see in real time what price he will pay if he purchases a certain quantity of bonds.

Pure mathematical formula for price:

$$
\begin{gathered}
\max \left(\text { previous_price }- \text { velocity } \cdot \text { up_bound } \cdot \text { floor_price } \cdot \frac{\text { current_time }}{\text { sale_time }} \text {, floor_price }\right) \\
+\frac{1}{2} \cdot \frac{\text { buy_amount }}{\text { bond_amount }} \cdot \text { up_bound } \cdot \text { floor_price }
\end{gathered}
$$

velocity

When velocity is set to 1 , the price in sale_time will move from the maximum price to the floor_price. Because the price reduces even quicker over time, the higher the value, the more users are rewarded.

For example, if floor_price $=25$ TOKEN_A/TOKEN_B, up_bound $=300$ percent, and the bond lasts one week, the price might drop by as much as 10.71 in a single day.

up_bound

Each purchase transaction raises the price by a certain percentage; the more we buy, the higher the price rises afterward. The price rises by the product of two factors, bond amount and supply ratio, in percentage terms (a percentage of how much we bought out of the entire bond).

The Bonds, are price mechanisms that tries to sell tokens at a predetermined rate over a specified period of time. Assume a Seller wishes to sell one token in exchange for a another one. BondSale is launched by the seller, who configures five variables:

Variable	Description
bond_amount	The amount of tokens that the Seller wishes to sell. of token which Seller want to sale.
floor_price	Minimal (and starting) price of a selling token.
sale_time	BondSale exists at this time.
up_bound	Defines the percentage difference between ceil price and floor price.
velocity	Defines how quickly price fall over time.

Calculation

```
pub fn calculate_new_price(
    bond_sale: &mut BondSale,
    current_time: u64,
    buy_amount: TokenAmount,
) -> Decimal {
    let delta_time = current_time - bond_sale.last_trade;
    let sale_time = bond_sale.end_time - bond_sale.start_time;
    let time_ratio = Decimal::from_integer(delta_time.try_into().unwrap())
        / Decimal::from_integer(sale_time.try_into().unwrap());
    let delta_price = bond_sale.velocity * bond_sale.up_bound *bond_sale.
    floor_price * time_ratio;
    let supply_ratio = buy_amount.percent(bond_sale.bond_amount);
    let price = match { bond_sale.
    previous_price } < { bond_sale.floor_price + delta_price } {
        true => bond_sale.floor_price,
        false => bond_sale.previous_price - delta_price,
    };
    let jump = supply_ratio * bond_sale.up_bound * bond_sale.floor_price;
    bond_sale.previous_price = price + jump;
    bond_sale.remaining_amount = bond_sale.remaining_amount - buy_amount;
    bond_sale.last_trade = current_time;
    price + Decimal::from_decimal(50, 2) * jump
```

where current_time measures how much time has passed since the start of the bonds and buy_amount is how much trader wants to buy.

Locally, in trade_time, the price chart looks like this:

$\frac{\partial \text { token_price }}{\partial \text { time }}=-$ velocity \cdot up_bound \cdot floor_price $\cdot \frac{1}{\text { sale_time }}$

2 Example

Seller want to sale 1 m INVT for USDC with:

- bond_amount $=1000000$,
- floor_price $=2$ USDC,
- sale_time = 1week,
- up_bound $=300 \%$,
- velocity $=1$.

Consider following two scenarios:

Case 1

Someone instantly buy 1000000 INVT.

$$
\mathrm{PRICE}=2+\frac{1}{2} \cdot 300 \% \cdot 2 \mathrm{USDC}=5 \mathrm{USDC}
$$

So buyer must paid 5000000 USDC.

Case 2

Only one person makes 28 proportionally equal trades every 6 hours, so he always has price equal to 2 USDC $+\frac{1}{2} \cdot \frac{1}{28} \cdot 300 \% \cdot 2$ USDC ≈ 2.107143 USDC (due to velocity $=1$). So buyer must paid 2107 143 USDC.

Limit case

In general when person makes $n \rightarrow \infty$ proportionally equal trades, the price is equal to 2 USDC.

$$
\text { ceil_price }=(1+\text { up_bound }) \cdot \text { floor_price }
$$

floor_price

