Invariant Bonds

March 15, 2022

1 Introduction

This paper is a short description focused to show how Invariant Bonds works. Bonds are a pricing
mechanism that allows users to purchase tokens at a lower price. Bond is made up of various variables.
The first, floor_price, defines the lowest price at which we may buy tokens. Each token purchase
increases the price, which further falls linearly over time. The up_bound parameter controls how much
the price can rise, while the velocity parameter determines how fast the price hits the floor_price.

When a user buys a part of a bond, he or she sets a new price and pays the arithmetic mean of the
previous and new prices. Each time, bond specifications are given, and the user may see in real time
what price he will pay if he purchases a certain quantity of bonds.

Pure mathematical formula for price:

current time

max (previousprice — velocity - up__bound - floor _price - , ﬂoorprice)

sale time
buy amount

1
3 m -up_bound - floor _price

velocity

When velocity is set to 1, the price in sale_time will move from the maximum price to the floor_price.
Because the price reduces even quicker over time, the higher the value, the more users are rewarded.

For example, if floor_price = 25 TOKEN_A/TOKEN_B, up_bound = 300 percent, and the bond lasts
one week, the price might drop by as much as 10.71 in a single day.

up bound

Each purchase transaction raises the price by a certain percentage; the more we buy, the higher the
price rises afterward. The price rises by the product of two factors, bond amount and supply ratio, in
percentage terms (a percentage of how much we bought out of the entire bond).

The Bonds, are price mechanisms that tries to sell tokens at a predetermined rate over a specified
period of time. Assume a Seller wishes to sell one token in exchange for a another one. BondSale is
launched by the seller, who configures five variables:

Variable Description

bond_amount | The amount of tokens that the Seller wishes to sell. of token which Seller want to sale.

floor_price | Minimal (and starting) price of a selling token.

sale_time BondSale exists at this time.
up_bound Defines the percentage difference between ceil price and floor price.
velocity Defines how quickly price fall over time.




Calculation

pub fn calculate_new_price(
bond_sale: &mut BondSale,
current_time: u64,
buy_amount: TokenAmount,
) -> Decimal {
let delta_time = current_time - bond_sale.last_trade;
let sale_time = bond_sale.end_time - bond_sale.start_time;
let time_ratio = Decimal::from_integer(delta_time.try_into() .unwrap())
/ Decimal::from_integer(sale_time.try_into() .unwrap());

let delta_price = bond_sale.velocity * bond_sale.up_bound *bond_sale.
floor_price * time_ratio;
let supply_ratio = buy_amount.percent (bond_sale.bond_amount) ;

let price = match { bond_sale.

previous_price } < { bond_sale.floor_price + delta_price } {
true => bond_sale.floor_price,
false => bond_sale.previous_price - delta_price,

};

let jump = supply_ratio * bond_sale.up_bound * bond_sale.floor_price;
bond_sale.previous_price = price + jump;
bond_sale.remaining_amount = bond_sale.remaining_amount - buy_amount;
bond_sale.last_trade = current_time;
price + Decimal::from_decimal(50, 2) * jump

where current_time measures how much time has passed since the start of the bonds and buy_amount

is how much trader wants to buy.
Locally, in trade_time, the price chart looks like this:

current_time

‘updated previous_price

3 token_pri !
¢ foxen price _ — velocity - up_bound - floor_price -

d time sale_time



2 Example

Seller want to sale 1 m INVT for USDC with:

bond_amount = 1 000 000,
floor_price = 2 USDC,
sale_time = lweek,
up_bound = 300%,
velocity = 1.

Consider following two scenarios:

Case 1
Someone instantly buy 1 000 000 INVT.

1
PRICE =2+ 3 300% - 2USDC = 5USDC

So buyer must paid 5 000 000 USDC.

Case 2

Only one person makes 28 proportionally equal trades every 6 hours, so he always has price equal to
2USDC +1 - 55 - 300% - 2USDC = 2.107143 USDC (due to velocity = 1). So buyer must paid 2 107
143 USDC.

Limit case

In general when person makes n — oo proportionally equal trades, the price is equal to 2 USDC.

ceil_price = (1+ up_bound) - floor_price

floor_price



	Introduction
	Example

